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Two-layer flow past a cylinder in a rotating frame
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(Received 14 November 1996 and in revised form 5 May 1998)

In this paper the two-layer flow past a cylinder in a rotating frame is modelled
numerically. This study follows on from the many theoretical and experimental
examinations of the one-layer flow past a cylinder. The main aim of this study is
to investigate the geophysically relevant effect on the flow of varying the vertical
shear, while keeping the other parameters the same in both layers. This will include
an examination of the contour plots of vorticity and streamfunction and measuring
the size of the separated region and the position of separation as a function of the
vertical shear. The most interesting result is that the separated region in the slower
layer grows much larger than that in the faster layer as the vertical shear is increased.

1. Introduction
The background rotation of the Earth plays an important role in many geophysical

flows, such as the flow past an island (Etling 1990). In Blanchonette (1997a) the effects
of background rotation on the flow past a cylinder were examined for both steady and
unsteady flows. The flow patterns observed were found to vary, sometimes markedly,
from those found in the non-rotating-frame case, due to the efficient dissipation
of vorticity via Ekman friction. Specifically, flow separation and unsteadiness can
develop for much larger Reynolds numbers than observed in the non-rotating flow.
Also, an asymmetry was observed in the wake of the cylinder, in contrast to the
symmetric wake in the non-rotating flow.

The stratification of the atmosphere and oceans can also play an important role
in many geophysical flows, such as the flow past a mountain range (Baines 1979) or
a seamount (Thompson 1993). To gain a greater understanding of geophysical flows
in which both stratification and rotation are important the effect of stratification on
the flow past a cylinder in a rotating frame is examined. To do this in the simplest
way possible a two-layer model was chosen; each layer of fluid being homogeneous,
the stratification was concentrated at the interface. The main aim of this paper is to
investigate the effect on the steady flow of varying the vertical shear while keeping
the other non-dimensional parameters the same in both layers. The most surprising
result to be revealed by this study is the rapid growth of the separated region in the
slower layer of fluid as the vertical shear increases.

1.1. The two-layer approximation

Quite distinct layers of fluid occur in nature, and some examples of these include when
a layer of warm water lies above cold water or fresh water above salt water; an abrupt
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change also occurs between the atmosphere and ocean. Continuously stratified flows
can often be modelled to a first approximation using multi-layer models. In these
models each layer is of constant density with the stratification concentrated at the
interface. Two-layer models have been used for a wide range of problems, for example,
baroclinic instability, the formation of bottom water and the flow past topography.

1.1.1. The two-layer flow past a cylinder in a rotating frame

A two-layer model has also been used to examine the effect of stratification on
the flow past a cylinder in a rotating frame. Brevdo & Merkine (1985) considered
this problem for the f-plane case, where the main aim was to examine the effect of
vertical shear on the flow. A further analysis of this study will appear in Blanchonette
& Page (1998). Firstly, Brevdo & Merkine studied the linear Stewartson layer and
demonstrated that when the vertical shear is sufficiently strong the wall velocity
and shear stress in the slower layer are of opposite sign to those in the faster
layer. Following this, Brevdo & Merkine explored the nonlinear form of the E1/4

layer, which involved using a boundary-layer numerical model to examine the radial
velocity profiles and shear stress on the surface of the cylinder. The velocity profiles
and shear-stress curves were examined for three different combinations of advection
strength and vertical shear and they found that it was possible to have flow reversal
in the slower layer without the flow separating when the vertical shear was strong.
They also studied the variation of the point of separation and flow reversal when the
vertical shear is strong, with the point of separation taken to be where the numerical
model ceased to converge. They found that, initially, flow reversal commenced close
to the rear stagnation point and separation near the front stagnation point. As the
strength of the advection increased the two points slowly merged at approximately
100◦ from the front of the cylinder.

A criterion was also derived for the flow in the upper and lower layers to remain
attached. As the flow approached separation it began to behave as a single-layer
fluid (which they referred to as barotropization), which lead them to suggest that the
criterion in the upper layer could be used as a criterion for fully attached flows in
both layers.

Merkine & Brevdo (1986) included the effect of the β-plane in their boundary-layer
model. Two parameter régimes were examined, namely 0 6 E1/2/Ro 6 ∞, β = O(1)
and E1/2/Ro � 1, βRo/E1/2 = O(1). For the first parameter range they found ‘the
enhancement/suppression of separation in the retrograde/prograde flows and the
east-west asymmetry observed in the experiments of Boyer & Davies (1982)’. In the
second parameter range they examined they found that when the oncoming flow was
vertically sheared large eddies could be formed at the rear of the cylinder.

The configuration of the two-layer flow past a cylinder in a rotating frame will now
be explained and the non-dimensionalized equations which describe the flow derived.

2. Governing equations
Consider the uniform flow of two layers of homogeneous, immiscible fluid of depth

d∗1 and d∗2, densities ρ∗1 and ρ∗2 and corresponding kinematic viscosities ν∗1 and ν∗2
past a right circular cylinder of radius l∗. The density of the fluid in the top layer
(layer one) is slightly less than that in the bottom layer (layer two), so the system
is gravitationally stable and the Boussinesq approximation is valid. The cylinder is
aligned with the vertical axis and is placed between two parallel plates of infinite
extent a distance d∗ apart. The whole system rotates in an anti-clockwise direction
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Figure 1. The geometrical configuration of the two-layer flow past a cylinder.

about an axis parallel to the z∗-axis with angular velocity Ω∗. The two layers have
free-stream speeds U∗1 and U∗2 , relative to the rotating frame. The centrifugal forces
are assumed to be negligible, so when there is no motion the interface remains level.
The configuration of this problem is shown in figure 1.

The equations which govern the flow can be non-dimensionalized with

ui =
u∗i
U∗

, xi =
x∗i
l∗
, di =

d∗i
l∗

and t = TΩ∗t∗, (2.1)

where xi = (xi, yi, zi) are Cartesian coordinates in layer i measured relative to the
rotating frame, ui = (ui, vi, wi) is the flow velocity in layer i measured relative to the
rotating frame, di is the depth of layer i (assumed to be of order unity) and T is a
characteristic timescale of the motion (which is undefined at this time).

Following this scaling, the governing equations in each layer become

T
∂ui
∂t

+ Ro (ui · ∇) ui + 2 (k × ui) = −∇Pi + d2
i Ei∇2ui (2.2)

and

∇ · ui = 0, (2.3)

where the reduced pressure Pi has been scaled by ρ∗i U
∗
i Ω
∗l∗. As in the one-layer case,

the Rossby and Ekman numbers can be defined as Ro = U∗/Ω∗l∗ and Ei = ν∗i /Ω
∗d∗2i ,

respectively, where U∗ = 1
2
(U∗1 + U∗2 ) is a characteristic horizontal velocity of the

flow. Considering the case of steady flow with Ro� 1 and Ei � 1 the leading-order
equation (2.2) in both layers is 2 (k × ui) = −∇Pi, which implies that the flow is
geostrophic and depth independent to leading order in each layer (Greenspan 1968).
Thus, a streamfunction can be defined in both layers of the form ui = −∂ψi/∂y and
vi = ∂ψi/∂x.

It can be shown that the vertical component of the vorticity ζi = (∇×ui) ·k satisfies

T
∂ζi

∂t
+ Ro(ui · ∇h)ζi = (2 + Roζi)

∂wi

∂z
+ d2

i Ei∇2
hζi, (2.4)

where ∇h = (∂/∂x, ∂/∂y, 0) is the horizontal gradient term in Cartesian coordinates
and ∇2

h = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian in Cartesian coordinates. The
term ∂wi/∂z is included so that the effect of the vortex stretching, caused by the
Ekman layers on the top and bottom plates and the interface, can be examined. From
the definition of the vertical vorticity ζi = (∇× ui) · k it follows that ∇2

hψi = ζi, which
is known as the Poisson equation.

In the problem examined here the interface does not move to leading order, although
the vertical velocity of the interface is included so that the effect of the sloping of
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the interface can be examined. The height of the interface is z = d2 + 1
2
RoFη, where

η = ψ2−ψ1 and F = f∗20 l
∗/(g∗∆ρ∗/ρ∗2). Applying the Ekman compatibility conditions

at z = 0, d including the vertical velocity of the interface gives (outside of the Ekman
layers) in the top layer

∂w1

∂z
= −1

2
E

1/2
1 ζ1 −

F1

2

Dη

Dt
− 1

2
E

1/2
1

χ

χ+ 1
(ζ1 − ζ2) (2.5)

and in the bottom layer

∂w2

∂z
= −1

2
E

1/2
2 ζ2 +

F2

2

Dη

Dt
− 1

2
E

1/2
2

χ

χ+ 1
(ζ2 − ζ1), (2.6)

where Fi = f∗20 l
∗2/g∗d∗i (∆ρ

∗/ρ∗2) and the O(RoFη) variations were neglected when
calculating the z derivatives.

In this study all the non-dimensional parameters are kept the same in both layers,
except for the free-stream speed (hence Ei = E, Fi = F and di = d) so the effect
of varying the strength of the vertical shear can be examined. For Ro = O(E1/2)
and letting T = 2E1/2, which is the timescale of the Ekman friction, the governing
equations are

∂ζ1

∂t
+λ (u1 · ∇h) ζ1 = (1 + 1

2
Roζ1)

[
1

2

(
−ζ1 +

χ

1 + χ
(ζ2 − ζ1)

)
− FDη

Dt

]
+δ2∇2

hζ1 (2.7)

and

∂ζ2

∂t
+λ (u2 · ∇h) ζ2 = (1+ 1

2
Roζ2)

[
1

2

(
−ζ2 +

1

1 + χ
(ζ1 − ζ2)

)
+ F

Dη

Dt

]
+δ2∇2

hζ2, (2.8)

where λ = Ro/2E1/2 = O(1) and δ = d
(

1
2
E1/2

)1/2 � 1, where δ is the scaled-
boundary-layer thickness. Writing Γ1 = ζ1 +Fη and Γ2 = ζ2−Fη equations (2.7) and
(2.8) become

∂Γ1

∂t
+ λ(u1 · ∇h)Γ1 =

1

2

[
−ζ1 +

χ

χ+ 1
(ζ2 − ζ1)

]
+ δ2∇2

hζ1 (2.9)

and
∂Γ2

∂t
+ λ(u2 · ∇h)Γ2 =

1

2

[
−ζ2 +

χ

χ+ 1
(ζ1 − ζ2)

]
+ δ2∇2

hζ2, (2.10)

respectively, where Γi is the potential vorticity in layer i. As a result of defining a
characteristic velocity U∗ it is required that U1 +U2 = 2. In this study the effects of
the sloping of the interface are to be examined, so F = O(1). Subtracting the Poisson
equation in layer two from the Poisson equation in layer one gives the Helmholtz
equation

∇2(ψ2 − ψ1)− 2F(ψ2 − ψ1) = Γ2 − Γ1, (2.11)

which is used so that ψ2−ψ1 can be found given Γi, and hence ψ1 and ψ2 individually.
The boundary conditions that apply to this flow are that the streamfunction in

each layer matches onto the appropriate uniform flow at infinity, so that ψi ∼ −Uiy
and ζi = 0 as r →∞, and that both ψi and ∂ψi/∂r are zero on r = 1.

The numerical method used to solve the governing equations is essentially the same
as used in the one-layer case; this is described in detail in Blanchonette (1995). Briefly,
the physical domain is conformally transformed to the computational domain using
the same transformation that was employed in the one-layer case. The governing
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equations are solved on the same stretched grid in each layer; the stretching used in
both directions was the same as that used in the one-layer method and typically a
128 by 128 grid was used. In the current study the scaled-boundary-layer thickness
was the same in both layers; this meant the grid used in both layers could be the
same without affecting the resolution in the E1/4 layer.

The solution process begins by calculating the initial values of the vorticity and
streamfunction in both layers using the method outlined in the Blanchonette (1995).
In order to solve the potential vorticity equations (2.9), (2.10) in both layers the
alternating-directions-implicit method was used. The Helmholtz equation and the
Poisson equation were inverted using the multigrid package mgd9v (de Zeeuw 1990).
The no-slip boundary condition on the surface of the cylinder was implemented in a
similar fashion to Becker (1989), which in turn was based upon a modified form of
that in Israeli (1972).

3. Results
3.1. Introduction

The numerical method described previously was used to solve the governing equations
in both layers over a wide range of the non-dimensional parameters. In this paper
the main focus will be on exploring the effect of variation of the vertical shear on the
steady symmetric flows, while keeping the other parameters (namely λ, δ and F) the
same in both layers. This will include examining the variation of the separation point
and size of the separated regions with increasing vertical shear. The most interesting
result is the rapid growth of the separated region in the slower layer as the vertical
shear is increased. In §3.2 contour plots of the vorticity and streamfunction will be
presented and in these cases F = 1 in both layers and χ = 1.

3.2. Parameter study

In this subsection the effects of increasing the strength of the advection and viscous
diffusion will be examined, by increasing λ and δ (the scaled-boundary-layer thickness),
respectively. In the first series of contour plots, depicted in figure 2, λ = 0 and δ = 0.1.
For λ = 0 the vorticity equation is linear and there is no advection of the flow. If both
U1 and U2 are 1 then the two layers are identical and the contour plots are the same
as the one-layer case with a scaled-boundary-layer thickness of 0.14 (since the scaled
depth is twice that of the two-layer case). When U1 = 1.2 (U1 is the free-stream speed
in the upper layer), and hence U2 = 0.8, the vorticity contours in the upper and lower
layers appear similar. Note that no vorticity is advected downstream, so that the only
mechanism for the spread of vorticity is through lateral diffusion and through the
interaction between the two layers. The streamfunction contour plots show that the
flow in both layers is symmetric across the y-axis, resembling potential flow, except
close to the cylinder.

Increasing U1 to 1.5 (not shown) results in contour plots of the vorticity and
streamfunction that appear similar to the plots for U1 = 1.2, but they are slightly
different close to the cylinder due to the interaction between the layers. Increasing
the vertical shear further, so that U1 = 1.8 (figure 2b), the plots of the vorticity
and streamfunction in the upper layer appear similar to the one-layer flow. In the
lower layer the streamfunction plot shows that the zero streamline has separated
from the cylinder and hence the flow is reversed right around the cylinder. Thus,
positive vorticity is generated on the top (meaning the left side of the cylinder looking
downstream) of the cylinder and negative vorticity on the bottom (meaning the right
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(a)

(b)

Figure 2 (a–b). For caption see facing page.

side of the cylinder looking downstream) of the cylinder in this layer. Above the
top of the cylinder there are negative contours of vorticity while below the cylinder
positive contours are present. This vorticity comes from the interaction between the
two layers through the Ekman layers that form at the interface, which was originally
noted by Brevdo & Merkine (1985).

If U1 is increased to 2.0 (figure 2c), so that the flow speed at infinity in the lower
layer is zero, the vorticity contours in the upper layer show little change from the
previous cases, with the streamlines resembling potential flow. In the lower layer
some of the vorticity is detached from the cylinder, as in the previous case. The
streamfunction contours in the lower layer have a dipole-like structure, with the flow
reversed around the whole cylinder.
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(c)

Figure 2. Contour plots of vorticity (left) and streamfunction (right) for λ = 0, δ = 0.1, F = 1,
χ = 1 and (a) U1 = 1.2, (b) U1 = 1.8 and (c) U1 = 2.0. The top plots are for the upper layer and
the bottom plots are for the lower layer. The contour interval for the vorticity is 0.1 in both layers.
The streamfunction contour interval is 1.0 in the upper layer, except close to the cylinder where it is
0.01. In the lower layer the streamfunction contour interval is 0.5, except close to the cylinder where
it is 0.01. When U1 > 1.8 the contour interval of the streamfunction is 0.02 close to the cylinder in
the lower layer.

In the second series of contour plots, shown in figure 3, λ is increased to 2, but
with the same value of δ as in figure 2. Again, the vertical shear is varied to examine
the effect of variation of this parameter. In figure 3(a), where U1 = 1.2 and U2 = 0.8,
the contour plots of the vorticity appear quite similar in both layers, except that
the vorticity in the upper layer is advected slightly further downstream than in the
lower layer. This is to be expected since the free-stream speed is larger in the upper
layer than in the lower layer. The contour plots of the streamfunction show that the
flow has separated from the surface of the cylinder in both layers. The upper-layer
separation bubble is slightly larger (as measured by the position of reattachment of
the zero streamline), being about one cylinder radius in length. This is consistent with
the effect of advection in the one-layer flow, where the separation bubble is larger in
the faster flows (note that the effective values of λ in both layers are really λU1 and
λU2, respectively). Also, the flow inside the upper- and lower-layer bubbles is almost
stagnant. As Matsuura & Yamagata (1985) noted for the one-layer flow, this is due
to the spin-down of the standing eddies at the rear of the cylinder (a more detailed
explanation of the effect of the Ekman layers is given in Blanchonette 1995).

Increasing the vertical shear further, figure 3(b) shows the case of U1 = 1.5 and
U2 = 0.5. Comparing the vorticity contour plots for each layer, it appears that the
vorticity is advected further downstream in the upper layer than in the lower layer, as
may be expected, since the free-stream speed is three-times larger in the upper layer.
Studying the contour plots of the streamfunction it can be seen, rather surprisingly,
that the size of the separation bubble in the lower layer is larger than that in the
upper layer. It can also be seen by the streamline density in the lower layer that the
flow in the lower-layer separation bubble is faster than that in the upper-layer bubble,
although the flow is still quite slow relative to the flow outside the shear layer.
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(a)

(b)

Figure 3 (a–b). For caption see facing page.

In figure 3(c) U1 is increased to 1.8 and hence U2 is reduced to 0.2. Again the
vorticity contour plots show that the vorticity is advected slightly further downstream
in the top layer compared to the bottom layer. Examining the vorticity in the lower
layer it is noted that above (to the left of the cylinder looking downstream) the
cylinder a contour of weak positive vorticity is observed and below (to the right of
the cylinder looking downstream) the cylinder a contour of weak negative vorticity is
seen, as well. This is similar to that observed in the one-layer β-plane retrograde flow
modelled numerically by Page & Johnson (1990) and Matsuura & Yamagata (1986).
This β-plane effect is seen due to the sloping of the interface between the two layers. It
is not seen in the λ = 0 contour plots, because when Ro = 0 the slope of the interface
is zero. In the one-layer β-plane experimental flows the β-effect is simulated by tilting
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(c)
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Figure 3. Contour plots of vorticity and streamfunction for λ = 2, δ = 0.1, F = 1, χ = 1 and
(a) U1 = 1.2, (b) U1 = 1.5, (c) U1 = 1.8 and (d) U1 = 2.0. The contour interval is the same as
figure 2 except that the contour interval of the vorticity is 0.01 when U1 = 2.0.

the upper and lower surfaces of the channel (see, for example, Boyer & Davies 1982),
thus the sloping of the interface in the two-layer flow produces similar effects. The
contour plots of the streamfunction show that the length of the separated region in
the upper layer is roughly the same size as the diameter as the cylinder, but that the
separated region in the lower layer is much larger than that in the upper layer, being
about two cylinder diameters long. The speed of the flow inside the separated region in
the upper layer is quite slow. In contrast to this, the speed inside the separated region
in the lower layer is of the same magnitude as for the flow just outside the shear layer.

For U1 = 2 the speed in the lower layer vanishes at infinity and this flow is
depicted in figure 3(d). The upper-layer contours of the vorticity extend a large
distance downstream, compared to the weaker vertical shear cases, as would be
expected. If very weak contours of vorticity are plotted a β-plane effect is observed
(in figure 3(d) the vorticity contour interval is 0.01). Some distance downstream of
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Figure 4. Contour plot of vorticity in the lower layer for λ = 2, δ = 0.1 and U1 = 2.0.
The contour interval is 0.5.

the cylinder a weak contour of positive vorticity can be seen above the x-axis and a
weak negative contour can be seen below the x-axis. Also, weak contours of vorticity
can be seen extending away from the cylinder above and below the main contours of
vorticity. Again, these features of the flow are similar to the one-layer prograde flows
which have been modelled numerically by Page & Johnson (1990) and Matsuura &
Yamagata (1986). This effect would also be seen in the weaker vertical shear cases
if the smaller contours were plotted. An explanation of the β-effects in the one-layer
flow are given in Blanchonette (1995). The contour plots of the streamfunction show
that the bubble in the top layer is about one cylinder diameter in length. The width
of the separated region has also increased and is greater than the diameter of the
cylinder and the flow inside the bubble has become more rapid.

Studying the lower-layer vorticity contour plot it is noted that some of the vorticity
is detached from the cylinder. This is because vorticity is not being generated directly
by the boundary layer on the cylinder, but comes from the interaction between the
two layers (a close up of the cylinder is shown in figure 4). In figure 3(d) contours
of vorticity can also be seen above and below the cylinder; this is a result of the
sloping interface discussed for the previous case. On the top surface of the cylinder
positive vorticity is generated and negative vorticity is generated around the bottom
of the cylinder. This is due to the flow being reversed right around the cylinder.
Examining the contour plot of the streamfunction in the lower layer it can be seen
that the separated region is massive and that most of the recirculation occurs on the
downstream side of the cylinder, in contrast to the λ = 0 case. The horizontal extent
of the 0.02 streamline is many times greater than the diameter of the cylinder. The
spin up of the slower layer by the faster one causes the separated region in the slower
layer to grow much larger and the recirculating flow to be more rapid than that in
the upper layer. The coupling of the two layers causes the slower layer to behave in
a way that could not be predicted from the one-layer flow.

As we have just seen the sloping of the interface between the two layers produces
similar effects to those observed in the one-layer case with the top of the container
being tilted to allow Rossby waves to propagate. The position of the interface between
the two layers is proportional to ψ2 − ψ1. The contour plot of the interface height
contours for the case just examined can be seen in figure 5. Away from the cylinder
the slope is essentially linear and at the rear of the cylinder a small region can be
seen where the interface is approximately level. Hence, flow features are observed that
are quite similar to those observed in the prograde and retrograde cases.
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Figure 5. Contour plot of ψ2 − ψ1 for λ = 2, δ = 0.1 and U1 = 2.0. The contour interval is 1.0,
except close to the cylinder where it is 0.02.

3.3. The effect of increasing δ

In the next series of contour plots, shown in figure 6, λ is kept constant at 2 (as
in figure 3) and δ is increased to 0.2, so that the effect of strengthening the viscous
diffusion can be examined. The same trends are noted as those observed in the
one-layer flow. Briefly, the E1/4 layer at the front of the cylinder has thickened and
less vorticity is produced on the surface of the cylinder. Also, the separated regions
are smaller and the recirculating flow is slower. However, when the vertical shear is
strong the contour plot of the streamfunction is similar to that for the δ = 0.1 case,
although the recirculating flow is slower.

3.4. Variation of bubble size with increasing vertical shear

3.4.1. The length of the separated region

To gain more of an understanding about the change in the size of the separated
regions with increasing vertical shear it is useful to plot the length of the separated
region in both layers relative to the diameter of the cylinder as a function of the
free-stream speed in the upper layer. The length of the separated region is defined as
the distance from the rear of the cylinder to the point at which the zero streamlines,
which enclose the recirculating region, meet. The length can also be defined in other
ways, as there are difficulties associated with accurately identifying the zero streamline
in the experiments, for example (see Matsuura & Yamagata 1985 or Page & Duck
1991).

A plot of the length of the separated region in both layers as a function of the
vertical shear is shown in figure 7 for λ = 2 and δ = 0.1. The length of the upper-
layer separated region increases slowly and in a monotonic fashion as the vertical
shear increases, similar to the trends noted in the one-layer case, since increasing the
free-stream speed can be thought of as increasing the strength of the advective term
in the vorticity equation. The size of the lower-layer separated region increases much
more quickly and when U1 ≈ 1.3 the lower-layer separation bubble is longer than
the upper-layer one. When U1 = 1.9 the lower-layer bubble is nearly four diameters
long, whilst the length of the separated region in the upper layer has yet to reach one
cylinder diameter.
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(a)

(b)

Figure 6. Contour plots of the vorticity and streamfunction for λ = 2, δ = 0.2, F = 1, χ = 1 and
(a) U1 = 1.8 and (b) U1 = 2.0.

Similar trends to the one-layer case are noted when the strength of the viscous
diffusion term is increased, the length of the separated regions being reduced, although
when the vertical shear is strong the length of the separated region in the slower layer
is approximately the same as the δ = 0.1 case. On increasing the strength of the
advection term similar trends are also noted to the one-layer flow.

3.4.2. The width of the separated region

In the one-layer case the width of the separation bubble changes little, if at all,
except when the flow has just separated from the cylinder surface. In the two-layer
case the width of the separated region in the upper layer behaves in a similar fashion
to the one-layer flow; however in the lower layer the width of the bubble increases
quickly as the vertical shear is increased. The width of the bubble (in this case) is
defined as the maximum distance between the zero streamlines, which enclose the
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Figure 7. The length of the separated region as a function of increasing vertical shear in the upper
(◦) and lower (∗) layers for λ = 2, δ = 0.1.
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Figure 8. The width of the separated region in the lower layer with increasing vertical shear for
λ = 2, δ = 0.1.

separated region, relative to the diameter of the cylinder. The variation of the width of
the upper-layer bubble will not be calculated since it changes only slightly in this layer.

In figure 8 the width of the separation bubble in the lower layer as a function of
the vertical shear is plotted for λ = 2 and δ = 0.1. Initially, when the vertical shear is
weak, the growth of the width of the bubble increases slowly. As U1 is increased to
about 1.5 the width of the bubble begins to grow more rapidly and once U1 = 1.95
it is about 1.85 cylinder diameters.

Increasing the strength of the viscous term produces the same trends noted in the
one-layer case, although when the vertical shear is strong the width of the separated
region is approximately the same as the δ = 0.1 case. On increasing the strength of
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Figure 9. The variation of the separation point with increasing vertical shear using the ad-
verse-pressure-gradient definition in the upper (∗) and lower (◦) layers for λ = 2, δ = 0.1. θ is
measured from the front stagnation point.

the advective term similar trends to the previous cases are noted. It must be noted
at this point that the measurements of the length and width of the separated region
become less accurate (compared to the weaker vertical-shear cases) as the size of the
separation bubble increases since the grid becomes coarser further from the cylinder.

3.5. Separation point

One feature of the one-layer flow examined by Page (1987) was the variation of the
separation point as λ was increased. It was found that, beyond the critical value
for separation, the separation point moved from the rear stagnation point around
towards 109◦ as λ was increased. That theory, however, was based on the properties
of inviscid flows and it is not necessarily so obvious where the separation point is
located in a viscous flow with a finite boundary-layer thickness. Batchelor (1967)
reports that it is common for the point of zero shear stress to be taken as the point
at which the flow separates. This is not strictly correct, as was pointed out by Brevdo
& Merkine (1985), since it is possible to have reversed flow without the boundary
layer actually separating from the cylinder. Another definition of separation is when
∂p/∂θ = 0 (Smith 1979); this is the point at which an adverse-pressure gradient
develops on the surface of the cylinder. This point can also be expressed as when
∂ζ/∂r = 0. The issue of flow separation in this context is examined in more detail
Blanchonette & Page (1997b). In the present study the point of separation was found
using the adverse-pressure-gradient definition.

Figure 9 depicts the case λ = 2 and δ = 0.1. When the vertical shear is weak the
point of separation is very close in both layers at approximately 90◦ from the front
stagnation point of the cylinder. As the vertical shear is increased the separation
point of the upper layer moves quite slowly towards the front of the cylinder, in
a similar fashion to the one-layer case. The flow separated at approximately 85◦,
measured from the front of the cylinder, when U1 = 1.9. In contrast to this, when U1

is increased beyond 1.6 the separation point in the lower layer moves quickly towards
the front stagnation point.
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Figure 10. The contour plots of vorticity and streamfunction when λ = 2, δ = 0.1 and F = 2 for
U1 = 2.0. The contour interval is the same as figure 3.

Increasing the strength of δ results in the flow in both layers separating closer to
the rear of the cylinder, as is expected; however when the vertical shear is strong the
flow in the slower layer separates at approximately the same point as in the δ = 0.1
case. Increasing the strength of the advection term also produces similar trends to
the one-layer case, the flow separating closer to the front stagnation point, although
when the vertical shear is strong the flow in slower layer separates at about the same
point as the δ = 0.1 case.

3.6. The effect of variation of the Froude number

The flow in both layers can also be affected by the variation of the Froude number,
which alters the slope of the interface. In this section the effect of reducing the Froude
number to zero and increasing it to 2 will be examined.

In the following case the parameter values will be fixed at λ = 2, δ = 0.1, χ = 1
and F = 2. When the vertical shear is weak the flow in both layers is similar to
that observed for the F = 1 case since the slope of the interface is small. As the
strength of the shear is increased the effect of increasing the Froude number becomes
clear. For the case U1 = 2.0, shown in figure 10, the contours of the vorticity and
streamfunction in the upper layer are essentially unchanged from the F = 1 case,
except that the vorticity contours produced by the β-effect are stronger due to the
increased slope of the interface, although they are still quite weak. This has also
been shown in the corresponding one-layer prograde flow modelled numerically by
Matsuura & Yamagata (1986). In the lower layer the vorticity contours are advected
slightly further downstream and the β-plane effect has been intensified compared
to the F = 1 case. The streamfunction contour plot shows that the width of the
recirculation region has decreased and the length has increased. This is was also
found by Matsuura & Yamagata (1986) for their numerically modelled one-layer
retrograde flows. As they explain this is caused by the long Rossby waves enhancing
the advection of vorticity.

The length of the separated region in the upper and lower layers shows very little
difference to the F = 1 case, shown in figure 7, although when the vertical shear is
strong the bubble in the lower layer is narrower and longer than for the F = 1 case,
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Figure 11. The contour plots of the vorticity and streamfunction for λ = 2, δ = 0.1, F = 0 with
U1 = 2.0. In this case the vorticity contour interval is 0.1 for all the plots.

due to the increased β-plane effect discussed previously. Furthermore, increasing the
Froude number has little effect on the position of separation.

Next, we will consider the case where the Froude number is reduced to zero and
in this case the interface remains level. The contour plots of the streamfunction and
vorticity for the same parameter values as the previous case, but with F = 0 are
shown in figure 11. When the vertical shear is weak the effect of reducing the Froude
number to zero is small. This is to be expected since when the vertical shear is weak
the slope of the interface is small (for non-zero Froude numbers), hence the β-effect
is small.

On increasing U1 to 1.8 no significant difference can be seen in the upper-layer
contours of the vorticity and streamfunction. However, in the lower layer the effect of
reducing the Froude number can be clearly seen. The contours of the vorticity are not
advected as far downstream and the contour plot of the streamfunction shows that
the bubble is shorter and wider and the recirculating flow is more rapid compared to
the F = 1 case, shown in figure 3. Since the interface is flat long Rossby waves can
no longer be generated in the lower layer, thus the bubble is shorter and wider than
for the non-zero Froude number cases.

When U1 = 2 (figure 11) the contour plots of the streamfunction and vorticity
in the upper layer show similar trends to the U1 = 1.8 case. Since the slope of the
interface is zero the β-plane effect noted in the previous cases is not observed in either
layer. Turning our attention to the lower layer, the vorticity contours produced by
the spin up of the slower layer by the faster one do not extend as far downstream
as the F = 1 case and they appear more rounded at the point closest to the cylinder.
The separation bubble is shorter and much wider than when F = 1; the bubble
also extends upstream past the cylinder since the strength of the adverse-pressure
gradient has increased. Compared to the F = 1 case the spin up of the lower layer
by the upper one has increased, since the interface remains level (hence the vertical
velocity at the edge of the Ekman layer has increased compared to the F = 1
case).
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Graphs of the separation point of the flow as a function of the vertical shear show
very little variation from the F = 1 case, illustrated in figure 9 although when the
vertical shear is strong the flow separates closer to the front of the cylinder in the
lower layer compared to the F = 1 case. This is to be expected, since reducing the
Froude number to zero increases the spin up of the slower layer by the faster one,
hence the adverse-pressure gradient on the cylinder increases.

The size of the separated region in the upper layer is not affected significantly by
reducing the Froude number. When the vertical shear is small the length and width
of the bubble in the lower layer varies little from that when F = 1. However, as the
vertical shear is increased the bubble in the lower layer is wider and shorter than the
F = 1 case, which is to be expected since long Rossby waves can no longer propagate
downstream.

4. Discussion
The flow past a cylinder in a rotating frame is a basic problem in geophysical fluid

dynamics. The two-layer problem allows the effect of stratification to be considered in
the simplest way possible. In this paper the problem has been modelled numerically,
the main focus being to examine in detail the effect of variation of the vertical shear
while keeping the other parameters the same in both layers. The calculations revealed
some quite surprising results that could not be predicted from the one-layer flows.

The contour plots of the streamfunction and the vorticity showed that the flow
in the faster layer displayed similar trends to those noted in the one-layer flows. In
the slower layer the flow also behaved in a similar fashion to the one-layer flow
when the vertical shear was weak. However, when the strength of the vertical shear
increased the flow in this layer behaved in a fashion that could not be predicted from
the one-layer flow, with the size of the separated region growing quickly. This rapid
increase in the size of the separated region is due to the spin up of this layer by the
faster one. Since the interface between the two layers could slope, a weak β-plane
effect was observed in both layers of fluid that resembled the β-effects observed in the
one-layer flow. In the faster layer this effect was found to be similar to the prograde
flows, while in the lower one it resembled the retrograde flows.

To further our understanding of the effect of varying the vertical shear the size of
the separated region in both layers was measured as a function of the vertical shear.
The length of the separated region in the faster layer increased monotonically in a
similar fashion to that observed in the one-layer flow. However, in the slower layer the
length and width of the separated region grew rapidly as the vertical shear increased.
Increasing the Froude number (and hence the slope of the interface) was found to
increase the length and decrease the width of the separated region in the slower layer,
although it did not have a significant effect on the separated region in the faster
layer. The variation of the separation point was also investigated and again the faster
layer showed similar trends to the one-layer case, the separation point moving slowly
towards the front stagnation point. However, as the vertical shear was increased the
separation point in the slower layer moved quickly towards the front of the cylinder.
Interestingly, when the vertical shear was strong the size of the separated region and
separation point of the flow in the slower layer did not change significantly when the
strength of the viscous diffusion was increased.

The two-layer boundary-layer flow past a cylinder on a f-plane has also been
investigated theoretically by Brevdo & Merkine (1985). The results of the present
study will be compared and contrasted to that study in Blanchonette & Page (1998).



318 P. Blanchonette

I wish to thank Michael Page for his assistance with this paper. I would also like
to thank the three referees for their helpful suggestions.

REFERENCES

Baines, P. G. 1979 Observations of stratified flow past three-dimensional obstacles. J. Geophys. Res.
84, 7834–7838.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Becker, A. 1989 Flow separation in a rotating fluid. PhD Thesis Monash University.

Blanchonette, P. 1995 The flow past a cylinder in a rotating frame. PhD Thesis Monash University.

Blanchonette, P. 1997 The flow past a cylinder in a rotating frame. Submitted to J. Fluid Mech.

Blanchonette, P. & Page, M. A. 1997 Boundary-layer separation in the two-layer flow past a
cylinder in a rotating frame. Submitted to Theor. Comput. Fluid Dyn. 11, 95–108.

Boyer, D. L. & Davies, P. A. 1982 Flow past a circular cylinder on a β-plane. Phil. Trans. R. Soc.
Lond. A 306, 533–556.

Brevdo, L. & Merkine, L. 1985 Boundary-layer separation of a two-layer rotating flow on a
f-plane. Proc. R. Soc. Lond. A 400, 75–95.

Etling, D. 1990 Mesoscale vortex shedding from large islands: a comparison with laboratory
experiments of rotating stratified flows. Met. Atmos. Phys. 43, 145–151.

Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.

Israeli, M. 1972 On the evaluation of iteration parameters for the boundary vorticity. Stud. Appl.
Maths 51, 67–71.

Matsuura, T. & Yamagata, T. 1985 A numerical study of viscous flow past a right circular cylinder
on a f-plane. J. Met. Soc. Japan 63, 151–166.

Matsuura, T. & Yamagata. T. 1986 A numerical study of viscous flow past a right circular cylinder
on a β-plane. Geophys. Astrophys. Fluid Dyn. 37, 129–164.

Merkine, L. & Brevdo, L. 1986 Boundary-layer separation of a two-layer rotating flow on a
β-plane. J. Fluid. Mech. 167, 31–48.

Page, M. A. 1987 Separation and free-streamline flows in a rotating fluid at low Rossby numbers.
J. Fluid Mech. 194, 493–500.

Page, M. A. & Duck, D. W. 1991 The structure of separated flow past a circular cylinder in a
rotating frame. Geophys. Astrophys. Fluid Dyn. 58, 197–223.

Page, M. A. & Johnson, E. R. 1990 Flow past cylinderical obstacles on a beta-plane. J. Fluid Mech.
221, 349–382.

Smith, F. T. 1979 Laminar flow of an incompressible fluid past a bluff body: the separation,
reattachment, eddy properties and drag. J. Fluid Mech. 92, 171–205.

Thompson, L. 1993 Two-layer quasi-geostrophic flow over finite isolated topography. J. Phys.
Oceanogr. 23, 1297–1314.

Zeeuw, P. M. de 1990 Matrix-dependent prolongation and restrictions in a blackbox multi-grid
solver. J. Comput. Appl. Maths 33, 1–27.


